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I. INTRODUCTION

Electromagnetic waves propagating along a transmission line are scattered
by bends in the line. The amount of scattering depends on the shapes and sizes
of the bends. At sufficiently low frequencies, when the wavelengths greatly
exceed the bend dimensions, the scattering effect of each bend can be represented

by equivalent lumped network elements loaded onto the transmission line at the
location of the bend.

Figure 1 shows a bend in an otherwise straight parallel—wire transmission
line and its representation by an equivalent symmetrical T section network. The

bend is formed when the two parallel wires are deflected identically through an
angle a . More precisely, the vertical plane in Figure 1 defined by the two
parallel wires on one side of the bend intersects the vertical plane defined by
the wires on the other side at an angle 11 — a ; the line of intersection is

normal to the two parallel horizontal planes containing each of the wires
individually.

The objective of the present effort is to determine the lumped inductance
L
d 

and the capacitance Cd appearing in the equivalent circuit representation
of the bend in Figure 1. These lumped elements can be calculated from a pair of
quasi—electrostatic and quasi—magnetostatic boundary—value problems for the bend
geometry.

The analysis of the bent two—wire transmission line is relevant to the E~~
internal—coupling problem of an aircraft. A cable running parallel to a metallic
wall or floor in the aircraf t ’s interior is essentially a two—wire transmission
line on account of the electrical image. A quantitative knowledge of the bend

- 

- 

inductance and capacitance will enable one to estimate the effect of a bend on
the EMP propagation characteristics of the cable.

• The bent parallel-wire transmission line has previously been studied by

• Tasiyasu [1] and King (21. These authors limited their investigations to the

abrupt V—shaped bend. The present work improves on their results and , at the

same time, extends their analysis to th. more general case of a smooth gradual

3
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bend . Specifically, the bend is modeled here by a circular arc with a finite
radius. The abrupt bend is recovered in the zero—radius limit. The circular
arc is clearly a more realistic model of a cable bend . The calculation shows

- 
that the abrupt bend model becomes unreliable when the bend angle a is close
to ir

5
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II. GEOMETRY OF THE PROBLEM

Figure 2 shows a model of a bend in an infinitely—long two—wire transmission

line. The line consists of two identical parallel conducting cylinders. The

radius of each cylinder is a ; the separation of their center lines is 2b

When the model is applied to the situation of a single conductor over a conducting

ground, the parameter b becomes the height of the conductor center line above

ground. In the following it will be assumed that the conductors are thin wires
so that b is much greater than a

The bend in each wire is modeled by a circular arc connecting the two semi—
infinite straight sections of the wire. The radius of the arc is R ; the angle
of the arc is the bend angle a . The two points on the center line at which

the circular arc is joined to the straight sections are located at (x0 ,

±b) with

xo .R se c
(~~~_ R c o s ~~~ ) 

(1)

y0 — R sin (
~
) (2)

Th~ ± sign of b refers to the upper and lower wires, respectively. In the

limit of vanishingly small R , both x0 and y0 tend to zero. The bend

geometry degenerates to that of an abrupt V—shaped bend at the coordinate

origin .

The total inductance and capacitance of an infinite transmission line are
infinite quantities. But the bend inductance Ld and the bend capacitance Cd
are finite since they stem from localized deviations in the line geometry. They

are functions of the geometrical parameters R , a , a and b

6
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III. DERIVATION OF THE INDUCTANCE INTEGRAL

Let a total current I flow down one wire of the bent two—wire transmission

line in Figure 2 and return by way of the other. If the wires are thin, the

current can be assumed to distribute itself uniformly in the wire interior.

Then the external inductance can be written down exactly in the form of a two—

dimensional integral. The internal inductance is negligible.

One first writes down the vector potential at a general point (x,y,z)
exterior to the wires

- 

L~~~~

” (p.- 
~~ 

+ e
y)

_ _ _ _ _ _ _ _ _ _  
— 

_ _ _ _ _ _ _ _ _ _  
(3)

\/~x_x1)
2+(y_y1)2+(z_b)2 /~~_x~)

2+(y_y t)2÷(z+b)2J

where x ’ and y ’ are the coordinates of the center line of a wire. The total

magnetic flux passing between the two wires due to the currents in the wires is

;-tven by

~~..J 3 .d$_ J (V x A).dS ...~~~4.d (4)

where the line integral goes around the perimeter of the area bounded by the

two wires. A general expression for the total inductance L , defined as the

ratio •/I , can be obtained by combining equations (3) and (4) :

p

L 
~~ 

LdY ~ (~ ~~~~~~~
. +

1 
- 

1 (5)
\ I(x—x’ )2+(y—y ’)2+a2 /(x—x’ ) 2+(y_y~ ) 2+(2b_a) 2J

• 8
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which is symmetric in the pairs (x,y) and (x ’,y ’).

To evaluate the integral (5) one must first supply from the bend geometry
the functional relation between x and y , and similarly between x’ and y’
in the form

x — f (y )  , x ’ — f(y’) (6)

The relation describes the locus of the center Line of a wire. For the case of
the circular bend in Figure 2 , one has

R sec (~)~ 
1R2_y 2 I)’I <

x f1~~’) — 

Ia\ 
(7)

~y~tan 1~I >

where y0 is defined by (2). For the case of the abrupt bend, one has

x — f 2 (y) — ly l t a n  (~) 
(8)

For the case of the straight transmission line, one has

x f 3(y) a 0 (9)

By evaluating the integral (5) with the three different functional
expressions f

1 , f2 and f 3 in (7), (8) and (9), one obtains three induc-
tances Li , L2 and L3 . They are respectively the total inductance of a

-

~~~~~ - - line with a circular bend , an abrupt bend , and no bend. All three are linearly
divergent quantities. However , the equivalent inductance L

d of the circular
bend given by the difference

- Ld L1 
- L3 (10)

9
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r
is finite. In the following two sections the calculation of Ld will proceed

in two steps. In Section IV one calculates the inductance difference

L~~— L 2 — L 3 
(11)

This quantity is the equivalent inductance of an abrupt bend . In Section V one

calculates the difference

(12)

due to the deviation of a circular bend from an abrupt bend . The desired circular

bend inductance Ld is then given by the sum

Ld
aL

~~
+ L

~~
. (13)

I
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IV. INDUCTANCE OF AN ABRUPT CABLE BEND

The equivalent inductance L,~ of an abrupt bend through an angle a in
a two—wire transmission line is defined by expression (11) . The two inductance
integrals L2 and L3 are explicitly given by

L2 
— ~ Jd y .1 dY~ (~ + A2 

~ )( 
2 

•_
2 2 2IA (IyI—Iy ’I) + (y—y ’) + a

— 
i. (14)

+ (y—y’)2 + (2b_a) 2/

and 
L
3 
• 
~~ f~ 

J;y ’ ( 1

2 2 
- 

2
1 

2)  
(15)

t - -a I(y—y’) + a ~~~-y’) + (2b—a)

- 1 where

A - tan (
~

-) (16)

• On. can show that the contribution to L2 from those regions of integration
in which y and y’ are of the same sign exactly cancel the corresponding
contribution to L3 . The nonzero contrib ution to L~ comes from the remaining
region , in which y and y’ are of opposite signs. In physical terms this
resu lt means that the self inductances of the two semi—infinite straight sections
of the bent transmission l ine are nta ffectsd by the bend ; the bend inductance

is entirely due to the chang. in the mutual inductanc. of the two semi—
infinite sections . This change is giv..n by

— F(A) — F(O) (17)

where

1.1

- - - ~~ fl1 ~~~~~~~~~~~~ - - -



P(A) — -~~(l—X
2
) P~}°~Y’( 2 2 2 2O — /c~+~) + (y—y ’) + a

— 
i. (18)

~~2(y÷y~)2 + (y—y ’)2 + (2b_a)2/

The integral F(A) can be worked out analytically by the following device.

?irst perform a change of integration variables:

u y — y ’ , v y + y ’ (19)

• 

- 

The corresponding change in the integration is

~~ ~A) r
J dy -J dy ’ + -

~J du J dv (20)
o —

Next make the substitution v — ut and interchange the order of integration .
The two ensuing integrations, first over u and then over t , are both

e1~~~ntary . The result is

2~
1(A) — —

~~
(b—a)—-

~
--— tan A (21)

Using definitions (16) and (17), one arrives at the simple explicit result

2~a (b—a)
a ° 

~ 
(a cot a — 1) (22.)

This is the exact formula for the equivalent inductance of an abrupt cable bend

within the thin—wire assumption. By contrast , the more complicated expression
• given by King (3] is only approximate.

I
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A plot of L,~ versus a is shown in Figure 3. One sees that the bend
inductance is a negative quantity. Its magnitude increases sharply as the

-: bend approaches a hair—pin bend (a — ir).
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V. INDUCTANCE OF A CIRCULAR CABLE BEND

The change L~ in the equivalent inductance when one goes from an abrupt

cable bend to a smooth cable bend modeled by a circular arc is given by
expression (12). The inductance L1 is defined by (5) with x — f 1(y) and

— f1(y ’) ; L2 ii similarly defined with x — f 2 (y) and x’ — f 2 (y ’).
From equations (7) and (8) it is clear that f1 

(y) and f 2 (y) are identical
for I y l ‘ y0 . Consequently the nonzero contributions to L~ come from

regions of integration in which either y or y ’ or both lie within the
interval (—y0 , ye). On the y—y ’ plane these regions form a cross, as
shown in Figure 4. The contributions to L~j consist of a part from the
central square of the cross and a part from the four semi—infinite strips

making up the four branches:

‘I
— L~j(square) + Lj(strips) (23)

These partial contributions are expressible as

[ L~ (square) — — G2

(24)
L~j(strips) — G3 

— G
4

• I where the quan tities G1 , C
2 , 

C3 and C4 are double integrals given

explicitly by

yo yo
G1

_ _ . tj dy f dy t ( l +  ~ 
_
~ _ _ _  _ _ _ _2z

_y J
y \ /(R2_y2) ~~2~~~2) / \/ (42...~2 

— ,42..~~2>
2 .,. 

~~~
,,

, 
>
2 + a2

— 
_____  _____  

(25)
— /a2_y 1 2)2 

+ (y—y ’) 2 + (2b—a) 2

— 
- ———- — -•,-

~~~~~~~~~~~~~ - -~~~~~~~~~~~ —~~~~~~~~~~ 4— ~~~~ V— - - 
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-
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—
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Figiare 4. Domain of integration for calculating the
inductance difference L~ between a circular
bend and an abrupt bend . Nonzero contributions
to L~ come from the undotted cross—shaped region. 
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y0 y0
• 

- ~~ f~yJ~
y’ (i + A2 

~~
:
~
)( 

2 2 2 2—y0 —; \ h ( Iy ~— I y ’ I )  + (y—y ’) + a

- 
1 (26)

+ (y—y ’)2 + (2b_a)2/

yo
G ‘u’ _~_ 2fdy f dyI(l+ X7’ 1

-!y \ 
h2-y ’2 / \ /(Ay - R/~~

1+ 1a2_yi 2)
2 

+ ~~~~~ 
)2 + a2

- 

/(Ay 
- 

R~~~~~ + 
42~~~2)

2 
+ (y-y ’)2 + (2b_a)

2) 
(27)

y
2 u r  ,O J 2 , -

C, •‘ — - 2 I d y I dy ’ (l+~~
—
~
-- 1

~ ~~ J ‘ \ I~~I ~2 2 2 2• y0 —; IA (y— I y ’ I)  + (y—y ’) + a

— 
I. (28)

v y_Iy u I )2 + (y—y ’)2 + (2b_a) 21

All four integrals are finite. The contribution L~j (square) is the shift in

the self inductance of the bent section between y0 and —y0 when the bend

geometry is changed from an abrupt bend to a smooth bend . The contribution

* 

L~ (strips) is the corresponding shift in the mutual inductance between the
bent section and the two adjoining semi—infinite straight sections.

One integration of each of the four double integrals can be carried out .
In the case of C1 , it is convenient to first introduce angle variables ~
and ~~

‘ such that

y R s i n ç, y ’ R sin~~’ (29)

17
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as well as their difference u and sum v

u - c p - p’ , v c p + c p’ 
- 

(30)

The v—integration can at once be performed, with the following result:

2p R  ,a I
C — ~ J du(a — u)cos uf 1

0 \h~~ a2 
- 2R2cos u

— 
1 (31)

+ (2b—a) 2 
— 2R2cos u /

In the case of C2 , one introduces the difference ii and sum v

u y — y ’ , v a y + y ’ (32)

and then integrates over one of them. The result reads

— 4 (1+A2) fdu (y 0—u) ( 1 
— 

1

+ a2 /(l+A2)u2 + (2b-a)2

~0
2 ~

‘

+ — (1— A ) 
J 

dv(~~(2y0 —v , v) — •~v,v)] (33)

0

where

/ / 2 2  2 2
•(u,v) — tn (  u + rA v + u + a (34)

- u + ,42~2 + u2 + (2b_a) 2/

In the cases of and C4 , one can carry out the y—integration directly
without any change of variables obtaining thereby the expressions

18
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C3 
- 

1 

2 
Jdy ’ (i 

+ ~~ 
2) 

- /R2_y f 2 y~) (35)
1+A —y0

- 

2 
Jdy ’ (~ + 

~; ~~~~~~~~ , y ’) (36)
l+A -y

0

where

f/ ~ /~i 0
_x)2 + (y 0—y)

2 
+ (2b—a) 2 

+ (1+A2)y 0 — 
Ax -

~(x,y) — m l —  ____________________ 1 ( 3 7 )

\,c? /(Ay0_x) 2 
+ (y0—y) 2 

+ a2 + (l+A2)y,, - Ax — y /
4- 

t

The remaining integration in C2 and C4 can be performed exactly.
However , the explicit integration produces such a proliferation of terms that
the results are practically useless. The integrals C1 and C3 in (31) and
(35) contain parts which are essentially integrals of incomplete elliptic

integrals. They are beyond the limits of the art of analytical integration.

One must ultimately resort to numerical integration for their evaluation. For
numerical purposes, it is more advantageous to retain all, four integrals in
the forms (31) , (33) , (35) and (36) .

The equivalent inductance Ld of a smooth bend consisting of a circular
arc of radius R and angle a is therefore given by

Ld
aL

~~
+ G l~~~

G2 + G 3~~~
G4 (38)

where L,~ is the equivalent inductance of an abrupt bend of angle a as given

in (22). The four C integrals are evaluated numerically for the cases b lOa
and R — 2b and 4b . The value s of Ld are plotted versus a in Figure 5.
The inductance of an abrupt bend (it — 0) is also shown for comparison. It is

seen that the dependence of Ld on the bend radius R is very pronounced
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for large bend angle a . At the chosen values of the parameters the abrupt
bend can be said to approximate the smooth bend only for a leøs than about
400 .

7
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• VI. INTEGRAL-EQUATION FORMULATION OF THE CAPACITANCE PROBLEM

Consider the bent two—wire transmission line in the coordinate system in

Figure 2. Let the upper wire at z — b be charged to a potential V
0/2 , and

the lower wire at z — —b to a potential —V0/2 . The potential difference

between the two wires is therefore V0 . The charge densities per unit length

on the upper and lower wires will be denoted by ±a , respectively. It will

be assumed that the two wires are thin, so that the wire radius is much smaller

than the wire separation. One can then consider the charges on the wires as

being concentrated on the center lines of the wires; and a can be expressed

as a function of the y—coordinate alone.

At a general point (x,y,z) exterior to the two wires the total electrostatic

potential due to the wires is obtained by summing up the contributions from all

the charge elements along the center lines:

/
1 1 , ds ’ 1 1V(z,y,z) I dy 

~—r 
a(y ) _________________ ——‘~~~~ “ 2 2 2v’(x—x ’) + (y—y’) + (z-b)

- 
1 (39 )

~~~~~~~I)2 + (y-y ’) 2 + (z+b)2/

In the formula s’ is the arc length measured along the center line of a wire,

so that

ds ’ I /dx ’\2

~? V  l +
~~~?’) (40)

Strictly speaking, the charge density a(y’) is to be determined by requiring

that V reduce to ±V0
/2 on the entire surfaces of the upper and lower wires,

respectively. However , to be consistent with the thin—wire assumption inherent
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in formula (39) , one can apply the boundary condition only along a line on the
surface of each wire. This line will be chosen to be at z — b — a  on the
upper wire, and at z — —(b - a) on the lower wire. An integral equation for
a(y ’) results:

V0 ~~~ J d y ’ ~~~~a Y t ( ~ 
2 2 2/(x-x’) + (y—y’) + a

— 
1 

—
~~

< Y <
~~ (41)

+ ~y—y ’~
2 

+ (2b_a)21

The integral equation (41) is to be solved under a specified functional
relation between x and y , and similarly between x’ and y ’ . This relation

• takes the form

x f (y )  , x’ — f(y ’) (42)

and describes the center line of a wire. Three forms of f(y) will be considered
in the following sections. For the line with a circular bend shown in Figure 2,
one has

a sec
(~~) 

— /it2_y2 I~ I <

x f1
(y) (43)

YItan (-~) lit >

where

y — R sin (
~‘) 

(44)

One also considers the abrupt V—shaped bend obtained in the limit as R tends
to zero. The functional relation for this case is

23
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X - f 2 (y) - l i lt an
(~~)

Finally, for a straight uniform line with no bend, one has

x f3(y) — 0 (46)

_ _  _  

. 2 4  1

______ • — -•• - -t_- 
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VII. VARIATIONAL REPRESENTATION OF THE CAPACITANCE

It is possible to calculate the capacitance of the two—wire transmission
line without solving explicitly the integral equation (41). The way to go about

4 this is to phrase the capacitance calculation as an eigenvalue problem. From

• well—known results in the calculus of variations, a variational principle for
• the eigenvalue can be established. It can be applied to obtain an estimate
- of the capacitance with a judicious choice of the trial function.

• Let Q denote the total charge on the upper wire. It is an infinite
quantity and can be expressed as a line integral of the line charge density

Q Is ~~dy ’ ~~~~~~~~~ (47)

Q is directly proportional to the potential difference V , the constant of
proportionality being the capacitance C

- 

. Q — C V  (48)

Using equations (47) and (48), one can eliminate V0 from the integral equation
- 

(41), which then becomes

- 

~~~~~fdi
’ ~~~~a(y ’) — Idy ’ ~~~~~~ y ’ K Y,y ’ < y < a  (49)

-
- - The kernel K(y y ’) is defined by

, 1 1 1K(y,y ) — y— i ______________________ 
— __________________________ I (50)‘

~ o \/ ~~~x I) 2 + (y—y ’)2 + a~ /(x—x’) 2 
+ (y—y ’)2 + (2b_a)2/

where x and x’ are related to y and y’ through equation (42).
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Equation (49) is linear and homogeneous, with the reciprocal of the capaci-

tance 1/C playing the role of an eigenvalue. A variational representation of

eigenvalue for an integral equation of the type (49) is well, known [4] and
takes the form

1 
~~dy J°’di ’ ~~ -~~- a(y)K(y,y’)a(y’)

— —  (51)C 
f°’dy f’dY ’ ~~~-~~ - o(y)a(y ’)

By “variational representation” is meant that lit is a functional on the space
of trial charge density functions a , and that its value attains an absolute

minimum at the exact aolution of (49). This minimum corresponds to the exact

value of the capacitance. If a trial charge density function differing from

the exact solution by a small amount 6a is inserted in (51), the error
incurred in the approximate value of the capacitance so obtained is only of
order (~o)2 . Consequently an evaluation of expression (51) , even with a

very crude trial function, can yield a good estimate of the capacitance.

On physical grounds the charge density per unit length of the two—wire
tranmeissiot line is uniform except in the vicinity of the bend. For a very

* 
long line with a length greatly exceeding the bend dimensions a good trial
function is therefore

a (y) — constant (52)

With this simple choice expression (51) becomes

~ 

IdY 1~’’ ~
I— (53)

d c l  , da ’
jd7~~~~jdY ~~r
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which depends only on the geometry of the bend. By applying to the kernel
K(y,y’) in (so) the three functional relations f1 , f 2 and f 3 def ined in
equations (43), (45) and (46),one obtains three kernels K1 , K2 and K3
These , when inserted into formula (53), generate three capacitances C1 , C2
and C

3 . They are, respectively, the total capacitance of a two—wire
transmission line with a circular bend , an abrupt bend and no band.

In the following two sections the equivalent capacitances of an abrupt
bend and a circular bend are calculated from formula (53). In Section VIII the
equivalent capacitance of an abrupt bend , denoted by C~ and defined as the
difference

C~~~~C~~— C ~ (54)

is evaluated in closed form. In Section IX the difference between the
circular bend capacitance and the abrupt bend capacitance, given by

C~~— C 1 — C
2 (55)

is expressed in the form of one—dimensional integrals ready for computation.
The equivalent capacitance C

d of the circular bend is then obtained as

Cd Cl
_ C

3
C
~~
+C

~ (56)

I
4—.-
.

:
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VIII. CAPACITANCE OF AN ABRUPT CABLE BEND

Consider a two—wire transmission line with an abrupt bend through an angle

This bend can be regarded as the limit of the circular bend in Figure 2
when the bend radius R tends to zero. Let the transmission line be of finite
length initially and stretch from y — D to y — —D . Eventually the constant
D will be allowed to tend to infinity. The total capacitance C

2 of this line
is calculable from formula (53):

I) 1) ds
2 ds~

- 

~~ L J d ~’ ~~~
— 

~~~r 
1(
2 (y,y’) (57)

The subscript 2 will everywhere refer to the line with an abrupt bend. The

kernel is given by

1 1K (y,y)— ________________2 2xcO~~~~~(1y1_ 1y I1 )2~ (~_~ I)
2 

+ a2 
*

1— ________________________________ I (58)
h2 ( ly Hy ’I ) 2 

+ (y-y ’)2 + (2b_a)21

with

A — tan 
(~

) 
(59)

is the total length of the line between y a D and y a —D

tD ds~ ~‘ 2S2 — J d ~ ’~~~~-— 2 D i1+A (60)

—D

j since, by (40) and (45),
dc—4 . r ’~+ x 2 (61)
dy
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• Now consider a straight two—wire transmission line of the same total length.
That is, its length $3 is given by

S3 — S 2 — 2 D / l + A 2 (62)

where the subscript 3 refers to the straight transmission line. This line can
¶ - be taken to lie parallel to the y—axis in Figure 2, and to stretch between

y — D/l + and y — —D/1. + . According to fortmila (53), its total capa—
citance C3 is

D/~~~~ DJ~~~
— -

~~
. I dy dy ’ K (y,y ’) (63)

3 s~ J / !  J r !3 —iw l+A

where

— 
i
Ll 

1 
— 1 (64 )If C

O\/(v_y~)2 + a2 ~~~~~~ + (2b_a) 21

A simple change of variables reduces (63) to the form

l+~~ J d ~ Ld71 K3 (v~~~~ y , /l+A2 y’) (65)

Substituting formulas (.57) and (65) into the identity

C2 
— C3 — C2C3 (~

- — (66)

and making use of relations (61) and (62), one obtains an expression for the

~~~~~~~~~~ eq capac itance of an abrupt cable bend defined in (54) : 

_ _ _ _ _ _



C
2c3

(l+x
2) 

LdY fd ~’ [K3
(/~~~~~ , /c;:~

’
Y~ ) - K2(Y~y’)] (67)

When the total length of the line is allowed to increase, the effec t of the bend
on the total capacitance of the line becomes negligible. The total capacitance

approaches the product of the line length and the constant capacitance per unit
length of the uniform line. In mathematical terms, one has

Urn C2 — C3 ~S3 
(68)

D
where

‘C — 

i n l  
b >> a (69)

is the well-known capacitance per unit length of the uniform two—wire transmission

line. Therefore in the limit D~~~, formula (67) goes over to the desired expres-
sion for the equivalent capacitance of an abrupt bend in an infinite two—wire
transmission line:

c~ - ‘C2 (l+x 2) Idy ldy t 
[K3
(~~~~~ y , wy’) - K2(~~yt)] (70)

It is easy to see from (58) and (64) that the integrand in (70) vanishes
identically whenever y and y ’ are of the same sign. The nonzero contributions

to C,~ can be rearranged as follows:

— ~(O)— ~ (A) (71)

where
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~
2(l+A2) 

~~dy ~~dy’(
o \h2 (~,.,’ ),’)

2 
+ ~y-y’~

2 
+ a2

- 
1 

(72)
+ (y— y’)2 + (Th_a)2/

The integral is the same as that appearing in expression (18) of Section IV,
and can be evaluated analytically by the method described therein. The result is

— 
2~

2 (b—a) l+A 2 
tan~

1A (73)

Combining expressions (59), (69), (71) and (73),  one obtains the equivalent
capacitance of an abrupt bend in the simple formula

2ir c (b—a)
Cd 

— 

[
in(21~)f2 

(1 — a csc a) (74)

For completeness one quotes here the associated equivalent inductance L~ of
the abrupt bend derived in equation (22) of Section IV:

2~ (b—a)
— (a cot a — 1) (75)

The expression (74) for the bend capacitance C~ is evaluated for the case
b — lOa , and plotted versus the bend angle a in Figure 6. The equivalent
capacitance of an abrupt cable bend has previously been calculated by Tomiyasu
11) and King (si using a different approximate method. Expression (74) agrees
with the ir result to within a few percent. It is, however, simpler in form and
applies to a wider range of the bend angle a
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IX. CAPACITANCE OF A CIRCULAR CABLE BEND

The equivalent capacitance Cd of a circular cable bend is the sum of the

equivalent capacitance C~ of an abrupt bend calculated in Section VIII and the

correction term C~ defined in equation (55). The evaluation of C~ is mder—

taken in this section.

Applying formula (53) successively to the two transmission lines with the
circular and abrupt bends and taking the difference of the two resulting

expressions, one obtains

s2 s2
(76)

C
2 

C1

On the left—hand side, S1 and S2 are the total lengths of the two transmission

lines :

ds’ ds ’
S2

ui f’dy ’~~4 (77)

They are both linearly divergent quantities. The right—hand side of (76) is a

two—dimensional integral:

rds ds’ ds ds’ 1 -•u _ I d 7  
J

’
d~

t 

~~~~~~ 
- i

~~~~K1(7~~’)J (78)

The kernel K2(y,y’) has been written out explicitly in equation (58). The

kernel K1(y,y’) is given by

K1(y,y’) 
.~~L( j .

‘
~~‘\v

1
~f 1(y) — f3.(y’)~

2 + (y_y))Z + a2
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— 
1 (79 )

I (f 1(y) — f1
(y’)]2 + (y—y ’)2 + (2b— a) 21

with f
1
(y) defined by (43). The two quantities 53. and 

~2 
in (78) are arc

lengths along the transmission lines. By (40) one obtains

ds’
— Ii~+ [f ~ (y’)]2 , ~~~~ 

— /1 + A2 (80)

The left—hand side of (76) is the difference of two infinite quantities.

Its value is nevertheless f inite, and is related to the capacitance difference
— C

1 
— C

2 . Introducing the relations

C2 
— C

1 
— C~ , S2 

a S1 + AS (81)

where C~ and AS are f inite and C1 -and S1 are infinite, ono finds that

- 

~2 

(s)

2 

C~ + 2 
(
~i)AS (82)

The ratio C
1/S1 in (82) is simply the capacitance per unit length of the

infinite bent transmission line. It is equal to ~ defined in (69) for the
-
- 

-- 
uniform line. Furthermore AS is the difference in the arc length between

an abrupt bend and a circular bend. From Figure 2 one can immediately write
down

AS — R(2X — a) (83)

Substituting (82) and (83) into (76) ,  one finally obtains an expression for

the capacitance correction term:

C~ - ~2w (84)



It remains to evaluate the two—dimensional integral W appearing in (84)

and defined in (78). One easily sees fro~u the definition of f
1(y) in (43)

that the integrand in (78) vanishes identically whenever both y and y’ lie

outside the interval (—y0
,y
0) . This result is a reflection of the fact that

the two differently—bent transmission lines- coincide outside the bent sections.

Consequently the nonzero contributions to the integral W come only from a
certain cross—sha?ed region on the y—y ’ plane, as shown in Figure 4. The

total contributions consist of a part from the central square of the cross,

and a part from the four semi—infinite strips forming the four limbs:

W — W(equare) + W(strips) (85)

Each of the two parts can be further subdivided as follows:

W(s quare) — —

— (8€)
W(strips) — C

3 
— C

4

The four ~ ‘s are two—dimensional integrals defined explicitly as follows:

2 ~‘O 
y0 /

G1
_
~~~~

-_
J
dy

J
dy’( 1

° y y \/x2 ( Iy I_ ~y,I) 2 
+ (y—y ’) 2 + a2

— 
_______________________________  

(87)
/A2 ( Iy I_ Iy ,I) 2 + (y—y ’) 2 + (2b_a)2/

&
2 1a12 ça/2 

/
__________________________

~ ~T J  ~J ~P’I  
_ _ _ _ _ _ _ _ _ _ _ _ _

-
2 

°—a/2 —a/2 \i~~~~~~~~~ + ~2 — 2R2cos (~—q”)

- 
1 (88)

/2R2 
+ (2b— a) 2 

— 2&2cos(~p—q”) /
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2 ~
‘0 /

G ~ 2(l+A ~ J dy J dy’j 1

~~o ~~
‘, \, y ! y , 1 2 

+ (y—y’)2 + a2

1
— ______________________________ I (89 )

/x2(y_Iy t ~)2 + (y—y ’) 2 + (2b_a)2J

- 
2R/’~~~~ 1 dYJ c~~

( 
2 2 2y0 —a/2 /(Ay — R v ”~~~

’
+Rcos p’ ) + ( y— R s inp ’)+ a

- 

- + ft cos p’)~ + (y — R sin p ’) 2 + (2b_a) 2) 
(90)

These four integrals are similar to those encountered in the inductance calculation.

Using the method outlined in Section V already , one can reduce the C’s to one—

dimensional integrals. The result of the reduction is

2 (l+A 2~ 
70 / 1 1G a  ‘ ‘J d u ( y — u ) I  _ _ _ _ _ _ _  

- _ _ _ _ _ _ _ _ _ _ _

0 
0 \/(l+A2)u2 + a2 /(l+A2)u2 + (2b—a)2

1 A 270+ —i-— J dv(~ (2y~, — v , v) — $(v, v)]  (91)
0 0

— 
~~~~~ : ~~~~~ - u) ( 2 2 20 /2k +a — 2k cosu

A — 
1 

(92)

/2R2 + (2b-a)2 — 2R2coc u /
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y

G - ~~~~~~ 
f

°
d ’ ~~(A l ’ I ’) 

~~3)
o _y

0

a/2
— 

~~~~~~~~ 
J 

dq,’~Y(R/c~~
’ 

— R cos p’ , R sin p 1) (~4)
-a/2

with 
___________I u + /~~~~~+u

2 + a 2
•(u ,v) — L a .  1 (95)

+ h22 + + (2b_a)2/

and _______________________________

~i;:~ /~i 0
_x)2 + (y0—y)

2 
+ (2b—a)2 + (l+A 2)y

0 — 
Ax — y

I’(x,y) £n~ ____________________ J(96)

\ /~~~~ /(Ay0_x)2 + ~y0-y~2 + a2 + (1+A 2)y
0 

- Xx — y /
* 

. For numerical purposes there is no advantage in trying to further reduce the
integrals. They will therefore be left in the present form.

In st. ary the equivalent capacitance C
d of a circular cable bend of

radius R and angle a is given by

Cd C~ — 2icR(2A — a) + ~
2 (G

1 
— G

2 
+ G

3 
— G

4
) (97)

The ~ ‘s are evaluated numerically for the typical cases b — lOa and ft — 2b
and 4b . The values of C

d 
are plotted versus a in Figure 7. The capacitance

of an abrupt bend (R — 0) is also shown for comparison. It is obvious from
the figure that the abrupt bend is not a good approximation to the smooth bend.

The same conclusion was drawn from inductance consideration.
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X. CONCLUSION

A symmetrical bend in a two—wire transmission line is modeled by a circularj - arc of radius ft and angle a , as shown in Figures 1 and 2. In the limit as
ft tends to zero , one obtains th. geometry of an abrupt bend. The equivalent
bend inductance Ld and the equivalent bend capacitance Cd are functions of
four geometrical par~~~ters ft , a , a and b , where a is the wire radius

- 
and b is one—half the wire separation.

The inductance Ld is calculated exactly within the thin—wire assumption.
The capacitance Cd is calculated from a variational principle. Numerical
studies lead to the conclusion that both Ld and Cd depend strongly on the
bend radius ft , so that the abrupt bend is not often a realistic model of a
cable bend .
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